Sweat powered smartwatches
Engineers at the University of Glasgow have developed a new type of flexible supercapacitor, which stores energy, replacing the electrolytes found in conventional batteries with sweat.
It can be fully charged with as little as 20 microlitres of fluid and is robust enough to survive 4,000 cycles of the types of flexes and bends it might encounter in use.
The device works by coating polyester cellulose cloth in a thin layer of a polymer, which acts as the supercapacitor’s electrode.
As the cloth absorbs its wearer’s sweat, the positive and negative ions in the sweat interact with the polymer’s surface, creating an electrochemical reaction which generates energy.
“Conventional batteries are cheaper and more plentiful than ever before but they are often built using unsustainable materials which are harmful to the environment,” says Professor Ravinder Dahiya, head of the Bendable Electronics and Sensing Technologies (Best) group, based at the University of Glasgow’s James Watt School of Engineering.
“That makes them challenging to dispose of safely and potentially harmful in wearable devices, where a broken battery could spill toxic fluids on to skin.
“What we’ve been able to do for the first time is show that human sweat provides a real opportunity to do away with those toxic materials entirely, with excellent charging and discharging performance.
Self-healing ‘living concrete’
Scientists have developed what they call living concrete by using sand, gel and bacteria.
Researchers said this building material has structural load-bearing function, is capable of self-healing and is more environmentally friendly than concrete – which is the second most-consumed material on Earth after water.
The team from the University of Colorado Boulder believe their work paves the way for future building structures that could “heal their own cracks, suck up dangerous toxins from the air or even glow on command”.
Living robots
Tiny hybrid robots made using stem cells from frog embryos could one day be used to swim around human bodies to specific areas requiring medicine, or to gather microplastic in the oceans.
“These are novel living machines,” said Joshua Bongard, a computer scientist and robotics expert at the University of Vermont, who co-developed the millimetre-wide bots, known as xenobots.
“They’re neither a traditional robot nor a known species of animal. It’s a new class of artefact: a living, programmable organism.
Tactile virtual reality
Researchers from Northwestern University have developed a prototype device which aims to put touch within VR’s reach, using a flexible material fitted with tiny vibrating components that can be attached to skin.
The system, known as epidermal VR, could be useful in other cases as well, from a child touching a display relaying the gesture to a family member located elsewhere, to helping people with amputations renew their sense of touch.
In gaming, it could alert players when a strike occurs on the corresponding body part of the game character.
The team’s design features 32 vibrating actuators on a thin 15cm by 15cm silicone polymer which sticks on to the skin without tape or straps and is free of large batteries and wires.
It uses near-field communication (NFC) technology – which is used in many smartphones for mobile payment today – to transfer the data.
“The result is a thin, lightweight system that can be worn and used without constraint indefinitely,” says Professor John A Rogers, who worked on the project.
Scientists hope that the technology could eventually find its way into clothing, allowing people with prosthetics to wear VR shirts that communicate touch through their fingertips.
Internet for everyone
e can’t seem to live without the internet (how else would you read sciencefocus.com?), but still only around half the world’s population is connected. There are many reasons for this, including economic and social reasons, but for some the internet just isn’t accessible because they have no connection.
Google is slowly trying to solve the problem using helium balloons to beam the internet to inaccessible areas, while Facebook has abandoned plans to do the same using drones, which means companies like Hiber are stealing a march. They have taken a different approach by launching their own network of shoebox-sized microsatellites into low Earth orbit, which wake up a modem plugged into your computer or device when it flies over and delivers your data.
Their satellites orbit the Earth 16 times a day and are already being used by organisations like The British Antarctic Survey to provide internet access to very extreme of our planet.
760mph trains
Hate commuting? Imagine, instead, your train carriage hurtling down a tunnel at the same speed as a commercial jet airliner. That’s the dream of PayPal, Tesla and SpaceX founder Elon Musk.
His Hyperloop system would see ‘train’ passengers travel at up to 760mph through a vacuum tube, propelled by compressed air and induction motors. A site has been chosen with the goal of starting test runs in two years. Once built, the loop will ferry passengers between San Francisco and LA in 35 minutes, compared to 7.5 hours by train